Tuhé teleso je ideálne teleso, ktorého:
- tvar a poloha sa účinkom ľubovoľne veľkých síl nemení,
- tvar a hmotnosť sa účinkom ľubovoľne veľkých síl nemení,
- tvar a objem sa účinkom ľubovoľne veľkých síl nemení,
- tvar a zloženie sa účinkom ľubovoľne veľkých síl nemení
Pri posuvnom pohybe tuhého telesa:
- všetky body telesa majú v ľubovoľnom okamihu rovnakú okamžitú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú priemernú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú obvodovú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú uhlovú rýchlosť.
Pri otáčavom pohybe tuhého telesa:
- všetky body telesa majú v ľubovoľnom okamihu rovnakú okamžitú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú priemernú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú obvodovú rýchlosť,
- všetky body telesa majú v ľubovoľnom okamihu rovnakú uhlovú rýchlosť.
Ak je os otáčania voľná:
- odstredivé sily pôsobiace na jednotlivé časti telesa sa vo svojich účinkoch nerušia,
- odstredivé sily pôsobiace na jednotlivé časti telesa sa vo svojich účinkoch rušia,
- látka telesa je rozložená rovnomerne okolo osi,
- látka telesa nie je rozložená rovnomerne okolo osi.
Rameno pôsobiacej sily je:
- dĺžka vektora pôsobiacej sily,
- kolmá vzdialenosť medzi dvoma vektormi pôsobiacich síl,
- kolmá vzdialenosť medzi vektorovou priamkou sily a osou otáčania,
- dĺžka osi otáčania tuhého telesa.
Veľkosť momentu sily vzhľadom na os otáčania je určený:
- súčinom veľkosti sily F a ramena sily r vzhľadom na túto os,
- súčtom veľkosti sily F a ramena sily r vzhľadom na túto os,
- súčtom veľkosti sily M a ramena sily r vzhľadom na túto os,
- súčinom veľkosti sily M a ramena sily r vzhľadom na túto os.
Podľa momentovej vety sa otáčavý účinok síl pôsobiacich na tuhé teleso ruší, ak:
- vektorový súčet momentov všetkých síl je konštantný vektor momentu sily,
- vektorový súčet momentov všetkých síl je nulový vektor momentu sily,
- vektorový súčin momentov všetkých síl je konštantný vektor momentu sily,
- vektorový súčin momentov všetkých síl je nulový vektor momentu sily.
Podľa pravidla pravej ruky prsty ukazujú smer:
- sily F, ktorá spôsobuje otáčanie a vztýčený palec ukazuje smer ramena tejto sily,
- momentu sily M, ktorý spôsobuje otáčanie a vztýčený palec ukazuje smer ramena tejto sily,
- sily F, ktorá spôsobuje otáčanie a vztýčený palec ukazuje smer momentu M tejto sily,
- momentu sily M, ktorý spôsobuje otáčanie a vztýčený palec ukazuje tejto sily F.
Otáčavý účinok sily pôsobiacej na teleso :
- závisí od veľkosti a smeru tejto sily, polohy pôsobiska sily voči osi otáčania.
- nezávisí od veľkosti a smeru tejto sily, ale závisí od polohy pôsobiska sily voči osi otáčania.
- závisí od veľkosti a smeru tejto sily, nezávisí od polohy pôsobiska sily voči osi otáčania.
- nezávisí ani od veľkosti a smeru tejto sily, ani od polohy pôsobiska sily voči osi otáčania.
Otáčavý účinok pôsobiacej sily sa neprejaví, ak
- vektorová priamka sily prechádza osou otáčania,
- vektorová priamka sily neprechádza osou otáčania,
- vektorová priamka sily neprechádza osou otáčania a je kolmá na os otáčania
- vektorová priamka sily neprechádza osou otáčania, a sila má veľkú veľkosť
Otáčavý účinok pôsobiacej sily sa prejaví, ak
- vektorová priamka sily prechádza osou otáčania,
- vektorová priamka sily neprechádza osou otáčania a je rovnobežná s osou otáčania
- vektorová priamka sily neprechádza osou otáčania a je kolmá na os otáčania
- vektorová priamka sily prechádza osou otáčania, a sila má veľkú veľkosť
Základnou jednotkou momentu sily je
- N
- N.m
- m
- N.s
Moment sily vzhľadom na os otáčania je vektor,
- ktorého smer určíme pravidlom pravej ruky
- ktorého smer určíme pravidlom ľavej ruky
- ktorého smer sa nedá určiť
- ktorý nemá smer
Ak na teleso pôsobí súčasne viacero momentov síl, tak
- výsledný moment Mv je rovný vektorovému súčtu pôsobiacich síl.
- výsledný moment Mv je rovný vektorovému podielu pôsobiacich momentov síl.
- výsledný moment Mv je rovný vektorovému súčinu pôsobiacich momentov síl.
- výsledný moment Mv je rovný vektorovému súčtu pôsobiacich momentov síl.
Momentová veta hovorí, že
- otáčavý účinok síl pôsobiacich na tuhé teleso sa ruší, ak vektorový podiel momentov všetkých síl je nulový vektor momentu sily.
- otáčavý účinok síl pôsobiacich na tuhé teleso sa ruší, ak vektorový súčin momentov všetkých síl je nulový vektor momentu sily.
- otáčavý účinok síl pôsobiacich na tuhé teleso sa neruší, ak vektorový súčet momentov všetkých síl je nulový vektor momentu sily.
- otáčavý účinok síl pôsobiacich na tuhé teleso sa ruší, ak vektorový súčet momentov všetkých síl je nulový vektor momentu sily.